

Ecodesign in the Textile Sector

UNIT 06: Life Cycle Assessment in textile sector

Ecoinnovation Skills for European Designers, Project number: 562573-EPP-1-2015-1-SI-EPPKA2-SSA.

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

LCA & PEF

WHY IS LCA SO IMPORTANT?

- I. To prove the respect of requirements and legislation
- 2. To adapt processes and products to specifications and legislation
- 3. To generate detailed information and to provide a scientific basis for environmental comparisons between products (comparative LCA)
- **4.** To identify areas of interest in order to reduce the related impacts
- To support actions of eco-labeling Marketing and eco-declarations (EPD, PEF)

PEF - PRODUCT ENVIRONMENTAL FOOTPRINT

Recommendation 2013/179/EC

on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Is a multi-criteria measure of the environmental performance of product, throughout its life cycle from raw material acquisition to final disposal.

SCOPE:

- I. optimization of processes
- 2. identification of significant environmental impacts
- **3.** communication of life cycle environmental performance
- 4. increase the comparability of the studies

Annex II: Product Environmental Footprint (PEF) Guide

Funded by the Erasmus+ Programme

of the European Union

PEF

Step 2: Define scope of Product Environmental Footprint

I) UNIT OF ANALYSIS AND REFERENCE FLOW

2) System Boundaries

3) ENVIRONMENTAL FOOTPRINT IMPACT CATEGORIES

WHAT	T-shirt (averange for size S,M,L), made from polyester				
How MUCH	l T-shirt				
WHAT WELL	Wear one time per week and use washing machine at 30°C for cleaning				
HOW LONG	For 5 years				

EF Impact Category	EF Impact Assessment Model	EF Impact Category indicators	
Climate Change	Bern model - Global Warming Potentials (GWP) over a 100 year time horizon.	kg CO ₂ equivalent	
Ozone Depletion	EDIP model based on the ODPs of the World Meteorological Organ- ization (WMO) over an infinite time horizon.	kg CFC-11 (*) equivalent	
Ecotoxicity for aquatic fresh water	USEtox model	CTUe (Comparative Toxic Unit for ecosystems)	
Human Toxicity - cancer effects	USEtox model	CTUh (Comparative Toxic Unit for humans)	
Human Toxicity – non- cancer effects	USEtox model	CTUh (Comparative Toxic Unit for humans)	

PEF Step 3: Create the Resource Use and Emissions Profile

An inventory of all material/energy resourse inputs/outputs and emissions into air, water and soil for the product supply chain.

- Elementary flows, which are (ISO 14040:2006, 3.12) "material or energy entering the system being studied that has been drawn from the environment without previous human transformation, or material or energy leaving the system being studied that is released into the environment without subsequent human transformation." Elementary flows are, for example, resources extracted from nature or emissions into air, water, soil that are directly linked to the characterisation factors of the EF impact categories;
- Non-elementary (or complex) flows, which are all the remaining inputs (e.g. electricity, materials, transport
 processes) and outputs (e.g. waste, by-products) in a system that require further modelling efforts to be transformed
 into elementary flows.

PEF

Step 4: Conduct the Environmental Footprint Impact Assessment

<u>Classification</u>: assigning the material/energy inputs and outputs inventoried in the Resourse Use and Emissions Profile to the relevant EF impact category.

The data are expressed in terms of constituent substances for which characterization factors are available.

EXAMPLE: CLASSIFICATION OF DATA FOR A T-SHIRT STUDY						
	CLIMATE CHANGE	ACIDIFICATION				
CO ₂	YES	NO				
CH₄	YES	NO				
SO ₂	NO	YES				
NO _x	NO	YES				

<u>Characterization</u>: calculation of the magnitude of the contribution of each classified input/output to their respective EF impact categories and aggregation of the contributions within each category.

The characterization factors are specific to each substance or resource.

Climate Change:

	Amount (kg)		CF			CO2-equivalents (metric tonnes)
CO2	5 1 3 2	×	1		=	5,132 t CO ₂ -eq.
CH4	8,2	×	25		=	0,205 t CO2-eq.
SO ₂	3,9	×	0		=	0 t CO ₂ -eq.
NO ₂	26,8	×	0		=	0 t CO ₂ -eq.
				Total	=	5,337 t CO ₂ -eq.

Funded by the Erasmus+ Programme of the European Union

PEF Step 4: Comparison of fibers – the environmental impacts

Values expressed in kg CO2 eq / kg fabric

European Commission's Joint Research Centre - Environmental Improvement Potential of Textiles

PEF Step 4: Use stage of textile products – the environmental impacts

European Commission's Joint Research Centre - Environmental Improvement Potential of Textiles

